Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 331: 138759, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37088201

RESUMO

Pyrolysis of calcium-rich feedstock (e.g., poultry manure) generates semi-crystalline and crystalline phosphorus (P) species, compromising its short-term availability to plants. However, enriching poultry manure with magnesium (Mg) before pyrolysis may improve the ability of biochar to supply P. This study investigated how increasing the Mg/Ca ratio and pyrolysis temperature of poultry manure affected its P availability and speciation. Mg enrichment by ∼2.1% increased P availability (extracted using 2% citric and formic acid) by 20% in Mg-biochar at pyrolysis temperatures up to 600 °C. Linear combination fitting of P K-edge XANES of biochar, and Mg/Ca stoichiometry, indicate that P species, mainly Ca-P and Mg-P, are altered after pyrolysis. At 300 °C, adding Mg as magnesium hydroxide [Mg(OH)2] created MgNH4PO4 (18%) and Mg3(PO4)2.8H2O (23%) in the biochar, while without addition of Mg Ca3(PO4)2 (11%) predominated, both differing only for pyrophosphate, 33 and 16%, respectively. Similarly, the P L2,3 edge XANES data of biochar made with Mg were indicative of either MgHPO4.3H2O or Mg3(PO4)2.8H2O, in comparison to CaHPO4.2H2O or Ca3(PO4)2 without Mg. More importantly, hydroxyapatite [Ca5(PO4)3(OH)] was not identified with Mg additions, while it was abundant in biochars produced without Mg both at 600 (12%) and 700 °C (32%). The presence of Mg formed Mg-P minerals that could enhance P mobility in soil more than Ca-P, and may have resulted in greater P availability in Mg-enriched biochars. Thus, a relatively low Mg enrichment can be an approach for designing and optimize biochar as a P fertilizer from P-rich excreta, with the potential to improve P availability and contribute to the sustainable use of organic residues.


Assuntos
Magnésio , Esterco , Animais , Disponibilidade Biológica , Fósforo/química , Aves Domésticas , Carvão Vegetal/química , Solo/química
2.
J Phys Chem Lett ; 12(45): 11170-11175, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34757751

RESUMO

Rare-earth scheelites represent a diverse family of compounds with multiple degrees of freedom, which enables the incorporation of a wide range of lanthanide color centers. Precise positioning of quantum objects is attainable by the choice of alkali cations and lattice connectivity of polyanion units. Herein, we report the structure-dependent energy transfer and lattice coupling of optical transitions in La3+- and Dy3+-containing scheelite-type double and quadruple molybdates NaLa1-xDyx(MoO4)2 and Na5La1-xDyx(MoO4)4. X-ray excitation of La3+ core states generates excited-state electron-hole pairs, which, upon thermalizing across interconnected REO8 polyhedra in double molybdates, activate a phonon-coupled excited state of Dy3+. A pronounced luminescence band is observed corresponding to optical cooling of the lattice upon preferential radiative relaxation from a "hot" state. In contrast, combined X-ray absorption near-edge structure and X-ray-excited optical luminescence studies reveal that such a lattice coupling mechanism is inaccessible in quadruple molybdates with a greater separation of La3+-Dy3+ centers.

3.
Angew Chem Int Ed Engl ; 60(36): 19852-19859, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34180115

RESUMO

The uneven consumption of anions during the lithium (Li) deposition process triggers a space charge effect that generates Li dendrites, seriously hindering the practical application of Li-metal batteries. We report on a cobalt phthalocyanine electrolyte additive with a planar molecular structure, which can be tightly adsorbed on the Li anode surface to form a dense molecular layer. Such a planar molecular layer cannot only complex with Li ions to reduce the space charge effect, but also suppress side reactions between the anode and the electrolyte, producing a stable solid electrolyte interphase composed of amorphous lithium fluoride (LiF) and lithium carbonate (LiCO3 ), as verified by X-ray absorption near-edge spectroscopy. As a result, the Li|Li symmetric cell exhibits excellent cycling stability above 700 h under a high plating capacity of 3 mAh cm-2 . Moreover, the assembled Li|lithium iron phosphate (LiFePO4 , LFP) full-cell can also deliver excellent cycling over 200 cycles under lean electrolyte conditions (3 µL mg-1 ).

4.
Angew Chem Int Ed Engl ; 60(28): 15582-15589, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33783069

RESUMO

A challenge in anion control in periodic solids is to preserve the crystal lattice while substituting for different anions of widely varying size and hardness. Post-synthetic modification routes that place cations or anions in non-equilibrium configurations are promising; however, such methods remain relatively unexplored for anion placement. Here, we report the synthesis of LaOI nanocrystals by a non-hydrolytic sol-gel condensation reaction and their transformation into LaOBr, LaOCl, and LaOF nanocrystals along hard-soft acid-base principles using post-synthetic metathesis reactions with ammonium halides. Anion displacement proceeds along halide planes, preserving the tetragonal matlockite structure. Energy-variant X-ray excited optical luminesce signatures of alloyed Tb3+ -ions is a sensitive quantum reporter of the preservation of the cation sublattice and hardening of the crystal structure upon anion replacement.

5.
J Am Chem Soc ; 142(36): 15513-15526, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786743

RESUMO

Transformations between different atomic configurations of a material oftentimes bring about dramatic changes in functional properties as a result of the simultaneous alteration of both atomistic and electronic structure. Transformation barriers between polytypes can be tuned through compositional modification, generally in an immutable manner. Continuous, stimulus-driven modulation of phase stabilities remains a significant challenge. Utilizing the metal-insulator transition of VO2, we exemplify that mobile dopants weakly coupled to the crystal lattice provide a means of imbuing a reversible and dynamical modulation of the phase transformation. Remarkably, we observe a time- and temperature-dependent evolution of the relative phase stabilities of the M1 and R phases of VO2 in an "hourglass" fashion through the relaxation of interstitial boron species, corresponding to a 50 °C modulation of the transition temperature achieved within the same compound. The material functions as both a chronometer and a thermometer and is "reset" by the phase transition. Materials possessing memory of thermal history hold promise for applications such as neuromorphic computing, atomic clocks, thermometry, and sensing.

6.
J Synchrotron Radiat ; 27(Pt 1): 100-109, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868742

RESUMO

Aluminium (Al) K- and L-edge X-ray absorption near-edge structure (XANES) has been used to examine Al speciation in minerals but it remains unclear whether it is suitable for in situ analyses of Al speciation within plants. The XANES analyses for nine standard compounds and root tissues from soybean (Glycine max), buckwheat (Fagopyrum tataricum), and Arabidopsis (Arabidopsis thaliana) were conducted in situ. It was found that K-edge XANES is suitable for differentiating between tetrahedral coordination (peak of 1566 eV) and octahedral coordination (peak of 1568 to 1571 eV) Al, but not suitable for separating Al binding to some of the common physiologically relevant compounds in plant tissues. The Al L-edge XANES, which is more sensitive to changes in the chemical environment, was then examined. However, the poorer detection limit for analyses prevented differentiation of the Al forms in the plant tissues because of their comparatively low Al concentration. Where forms of Al differ markedly, K-edge analyses are likely to be of value for the examination of Al speciation in plant tissues. However, the apparent inability of Al K-edge XANES to differentiate between some of the physiologically relevant forms of Al may potentially limit its application within plant tissues, as does the poorer sensitivity at the L-edge.


Assuntos
Compostos de Alumínio/análise , Raízes de Plantas/química , Espectroscopia por Absorção de Raios X/métodos , Compostos de Alumínio/toxicidade , Arabidopsis/química , Arabidopsis/efeitos dos fármacos , Cristalização , Relação Dose-Resposta a Droga , Fagopyrum/química , Fagopyrum/efeitos dos fármacos , Pectinas/química , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/química , Poluentes do Solo/toxicidade , Glycine max/química , Glycine max/efeitos dos fármacos , Especificidade da Espécie , Síncrotrons
7.
Anal Chim Acta ; 1057: 80-87, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30832921

RESUMO

A wide range of methods are used to estimate the plant-availability of soil phosphorus (P). Published research has shown that the diffusive gradients in thin films (DGT) technique has a superior correlation to plant-available P in soils compared to standard chemical extraction tests. In order to identify the plant-available soil P species, we combined DGT with infrared and P K- and L2,3-edge X-ray adsorption near-edge structure (XANES) spectroscopy. This was achieved by spectroscopically investigating the dried binding layer of DGT devices after soil deployment. All three spectroscopic methods were able to distinguish between different kinds of phosphates (poly-, trimeta-, pyro- and orthophosphate) on the DGT binding layer. However, infrared spectroscopy was most sensitive to distinguish between different types of adsorbed inorganic and organic phosphates. Furthermore, intermediates of the time-resolved hydrolysis of trimetaphosphate in soil could be analyzed.

8.
Sci Total Environ ; 643: 145-156, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29936158

RESUMO

To decrease environmental impacts from usage of mineral P fertilizers based on rock phosphate, alternative P fertilizers are urgently necessary but have to be critically evaluated for their characteristics and behaviour or effects in soil. For this reason, bone char (BC) and S-enriched BC (BCplus), original and after one vegetation period in soil, were analysed by wet chemical analyses and XANES spectroscopy. According to X-ray absorption near edge structure (XANES) spectroscopy, both chars were dominated by P bound in hydroxyapatite, which was well reflected by wet chemical P fractionation, where Ca-P was the dominant fraction. Sulfur fractionation of both chars confirmed low percentages of sulfate-S according to XANES analysis but failed to detect elemental S in BCplus. Because S concentrations in BCplus were comparable to that of activated carbon used for biogas desulfurization and sorbed S was dominantly elemental S, BC seems to be well suited for biogas desulfurization. After one year in soil the disappearance of more easily soluble Ca(H2PO4)·2H2O and strongly reduced proportions of sulfates and sulfonates in soil-BCplus compared to BCplus pointed to considerable advantages of BCplus over BC. Taking into consideration the acidic pH of BCplus, the high Ca, P, and S concentrations and the expected microbial induced "in situ digestion" of BC by oxidation of elemental S, it can be concluded that a cascade usage of BC as biogas adsorber and following subsequent usage of BCplus as S/P/Ca/Mg (multi-element) fertilizer could be an alternative to mineral fertilizers based on rock phosphate. The agronomic efficiency and detailed application guidelines must be derived from established and currently running longer-term plot and field experiments.

9.
Inorg Chem ; 57(10): 5842-5849, 2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29746109

RESUMO

The development of an expanded palette of X-ray phosphors is a critical imperative for applications in medical imaging, radiation detection, and scientific instrumentation. The rational design of X-ray phosphors has been stymied by the absence of fundamental understanding of activation channels, sensitization mechanisms, and recombination pathways induced upon high-energy excitation of luminescent centers. In this article, we describe the preparation of Eu-doped LaOCl nanocrystals based on the condensation of molecular precursors. The synthetic route allows for control of the oxidation state of the incorporated Eu-atoms based on ligand-induced oxidation or reduction of the Eu-precursors. Nanocrystals exhibiting blue and red X-ray excited optical luminescence are developed by tuning the oxidation state of europium ions incorporated within the LaOCl nanocrystal matrix. Pronounced modulation of the intensity of the optical luminescence is evidenced at and near the giant resonance absorption of the host matrix as a result of distinctly divergent recombination channels. Resonant excitation results in recombination via Auger electron ionization and relaxation of a single electron-hole pair, whereas excitation away from the giant resonance results in thermalization of "hot" electron-hole pairs, while launching cascades of energy transfer, excitation, and radiative recombination events at the Eu-luminescent centers. Mechanistic elucidation and the development of a generalizable synthetic route starting from molecular precursors paves the way to an expanded palette of X-ray phosphors.

10.
J Synchrotron Radiat ; 25(Pt 2): 543-551, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488935

RESUMO

The first comprehensive Li K-edge XANES study of a varied suite of Li-bearing minerals is presented. Drastic changes in the bonding environment for lithium are demonstrated and this can be monitored using the position and intensity of the main Li K-absorption edge. The complex silicates confirm the assignment of the absorption edge to be a convolution of triply degenerate p-like states as previously proposed for simple lithium compounds. The Li K-edge position depends on the electronegativity of the element to which it is bound. The intensity of the first peak varies depending on the existence of a 2p electron and can be used to evaluate the degree of ionicity of the bond. The presence of a 2p electron results in a weak first-peak intensity. The maximum intensity of the absorption edge shifts to lower energy with increasing SiO2 content for the lithium aluminosilicate minerals. The bond length distortion of the lithium aluminosilicates decreases with increasing SiO2 content, thus increased distortion leads to an increase in edge energy which measures lithium's electron affinity.

11.
Chemosphere ; 169: 377-386, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27886540

RESUMO

Biochar application to agricultural land has been proposed as a means for improving phosphorus (P) availability in soil. The purpose of the current study was to understand how pyrolysis temperature affects P speciation in biochar and how this affects availability of P in the amended soil. Biochar was produced at different temperatures from digestate solids. The primary species of P in digestate solids were simple calcium phosphates. However, a high co-occurrence of magnesium (Mg) and P, indicated that struvite or other magnesium phosphates may also be important species. At low temperatures, pyrolysis had little effect on P speciation; however, as the temperature increased above 600 °C, the P gradually became more thermodynamically stable in species such as apatite. At very high temperatures above 1000 °C, there were indications of reduced forms of P. Biochar production decreased the immediate availability of P in comparison with the original digestate solids. However, for biochar produced at low temperatures, availability quickly increased to the same levels as in the digestate solids. For biochar produced at higher temperatures, availability remained depressed for much longer. The low availability of P in the biochar produced at high temperatures can probably be explained by the formation of less soluble P species in the biochar. In contrast, the transient decrease of availability of the P in the biochar produced at low temperatures can be explained by mechanisms, such as sorption on biochar, which gradually decreases because of oxidation of the biochar surfaces or changes in pH around the biochar particles.


Assuntos
Carvão Vegetal/química , Esterco , Fósforo/química , Solo/química , Agricultura , Temperatura Alta , Oxirredução
12.
Nanoscale ; 8(2): 979-86, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26661920

RESUMO

Design rules for X-ray phosphors are much less established as compared to their optically stimulated counterparts owing to the absence of a detailed understanding of sensitization mechanisms, activation pathways and recombination channels upon high-energy excitation. Here, we demonstrate a pronounced modulation of the X-ray excited photoluminescence of Tb(3+) centers upon excitation in proximity to the giant resonance of the host Gd(3+) ions in solid-solution Gd1-xTbxOCl nanocrystals prepared by a non-hydrolytic cross-coupling method. The strong suppression of X-ray excited optical luminescence at the giant resonance suggests a change in mechanism from multiple exciton generation to single thermal exciton formation and Auger decay processes. The solid-solution Gd1-xTbxOCl nanocrystals are further topotactically transformed with retention of a nine-coordinated cation environment to solid-solution Gd1-xTbxF3 nanocrystals upon solvothermal treatment with XeF2. The metastable hexagonal phase of GdF3 can be stabilized at room temperature through this topotactic approach and is transformed subsequently to the orthorhombic phase. The fluoride nanocrystals indicate an analogous but blue-shifted modulation of the X-ray excited optical luminescence of the Tb(3+) centers upon X-ray excitation near the giant resonance of the host Gd(3+) ions.

13.
ChemSusChem ; 6(7): 1196-202, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23670967

RESUMO

Nonaqueous lithium-oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium-oxygen batteries. We demonstrate that the major discharge product formed in the lithium-oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium-oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide-type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Fenômenos Magnéticos , Oxigênio/química , Condutividade Elétrica , Modelos Moleculares , Conformação Molecular , Peróxidos/química , Teoria Quântica , Propriedades de Superfície
14.
Phys Chem Chem Phys ; 14(27): 9578-81, 2012 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-22678419

RESUMO

Comprehensive X-ray absorption near-edge structure spectroscopy at the C, O and Li K-edges and the Mn, Fe, and P L-edges of LiMn(0.75)Fe(0.25)PO(4) nanorods-graphene has been reported in great detail. Compared to that of free standing graphene and LiMn(0.75)Fe(0.25)PO(4), the intimate interaction between the nanorods and graphene via charge redistribution has been unambiguously confirmed. This interaction not only anchors the nanorods onto the graphene but also modifies its surface chemistry, both of which afford the nanorods-graphene hybrid an ultra-high rate performance in lithium ion batteries. Such knowledge is important for the understanding of hybrid nanomaterials for lithium ion batteries and allows rational design for further improvements in performance.

15.
Chemphyschem ; 11(17): 3625-31, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21080402

RESUMO

The distinct optical emission from ZnO materials, nanoneedles and microcrystallites synthesized with different sizes and morphologies by a flow deposition technique, is investigated with X-ray excited optical luminescence (XEOL) and time-resolved X-ray excited optical luminescence (TR-XEOL) from a synchrotron light source at the O K and Zn L(3,2) edges. The innovative use of XEOL, allowing site-specific chemical information and luminescence information at the same time, is fundamental to provide direct evidence for the different behaviour and the crucial role of bulk and surface defects in the origin of ZnO optical emission, including dynamics. XEOL from highly crystalline ZnO nanoneedles is characterized by a sharp band-gap emission (~380 nm) and a broad red luminescence (~680 nm) related to surface defects. Luminescence from ZnO microcrystallites is mostly dominated by green emission (~510 nm) associated with defects in the core. TR-XEOL experiments show considerably faster decay dynamics in nanoneedles compared to microcrystallites for both band-gap emission and visible luminescence. Herein we make a fundamental step forward correlating for the first time the interplay of size, crystallinity, morphology and excitation energy with luminescence from ZnO materials.


Assuntos
Nanoestruturas/química , Óxido de Zinco/química , Luminescência , Medições Luminescentes , Nanoestruturas/ultraestrutura , Raios X
16.
Environ Sci Technol ; 44(6): 2092-7, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20146464

RESUMO

Little is known about P species in agro-industrial byproducts from developing countries, which may be either pollutants or valuable soil amendments. The present study speciated P in dry (COD) and wet (COW) coffee, sisal (SIS), barley malt (BEB) and sugar cane processing (FIC) byproducts, and filter cakes of linseed (LIC) and niger seed (NIC)with sequential fractionation, solution (31)P nuclear magnetic resonance (NMR) spectroscopy, and P K- and L(2,3)-edge X-ray absorption near-edge structure (XANES) spectroscopy. The sequential P fractionation recovered 59% to almost 100% of total P (P(t)), and more than 50% of P(t) was extracted by H(2)O and NaHCO(3) in five out of seven samples. Similarly, the NaOH + EDTA extraction for solution (31)P NMR recovered 48-94% of P(t). The (31)P NMR spectra revealed orthophosphate (6-81%), pyrophosphate (0-10%), and orthophosphate monoesters (6-94%). Orthophosphate predominated in COD, COW, SIS, and FIC, whereas BEB, UC, and NIC were rich in orthophosphate monoesters. The concentrations of P(i), and P(o) determined in the sequential and NaOH + EDTA extractions and (31)P NMR spectra were strongly and positively correlated (r = 0.88-1.00). Furthermore, the P K- and L(2,3)-edge XANES confirmed the H(2)SO(4)--P(i) detected in the sequential fractionation by unequivocal identification of Ca--P phases in a few samples. The results indicate that the combined use of all four analytical methods is crucial for comprehensive P speciation in environmental samples and the application of these byproducts to soil.


Assuntos
Agricultura , Monitoramento Ambiental/métodos , Resíduos Industriais/análise , Fósforo/química , Poluentes do Solo/química , Fracionamento Químico , Países em Desenvolvimento , Etiópia , Espectroscopia de Ressonância Magnética , Espectroscopia por Absorção de Raios X
17.
J Environ Qual ; 39(6): 2179-84, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21284316

RESUMO

The phosphorus (P) in agro-industrial by-products--a potential source of freshwater eutrophication but also a valuable fertilizer--needs to be speciated to evaluate its fate in the environment. We investigated to what extent X-ray absorption near edge structure (XANES) spectroscopy at the P K- and L2.3-edges reflected differences in sequentially extracted filter cakes from sugarcane (Saccharum officinarum L.) (FIC) and niger seed (Guizotia abyssinica Cass.; NIC) processing industry in Ethiopia. The P fractionation removed more labile (54%) and H2SO4-P (28%) from FIC than from NIC (18% labile, 12% H2SO4-P). For the FIC residues after each extraction step, linear combination (LC) fitting of P K-edge spectra provided evidence for the enrichment of Ca-P after the NaOH-extraction and its almost complete removal after the H2SO4-treatment. The LC-fitting was unsuccessful for the NIC samples, likely because of the predominance of organic P compounds. The different proportions of Ca-P compounds between FIC (large) and NIC (small) were more distinctive in L2-than in the K-edge XANES spectra. In conclusion, the added value of complementary P K- and L2.3-edge XANES was clearly demonstrated, and the P fractionation and speciation results together justify using FIC and NIC as soil amendments in the tropics.


Assuntos
Absorciometria de Fóton , Resíduos Industriais , Fósforo/química , Análise Espectral/métodos , Agricultura , Fracionamento Químico , Monitoramento Ambiental
18.
J Synchrotron Radiat ; 16(Pt 2): 247-59, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19240337

RESUMO

Synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy is becoming an increasingly used tool for the element speciation in complex samples. For phosphorus (P) almost all XANES measurements have been carried out at the K-edge. The small number of distinctive features at the P K-edge makes in some cases the identification of different P forms difficult or impossible. As indicated by a few previous studies, the P L(2,3)-edge spectra were richer in spectral features than those of the P K-edge. However, experimentally consistent spectra of a wide range of reference compounds have not been published so far. In this study a library of spectral features is presented for a number of mineral P, organic P and P-bearing minerals for fingerprinting identification. Furthermore, the effect of radiation damage is shown for three compounds and measures are proposed to reduce it. The spectra library provided lays a basis for the identification of individual P forms in samples of unknown composition for a variety of scientific areas.


Assuntos
Fósforo/química , Fósforo/normas , Espectrometria por Raios X/normas , Síncrotrons/normas , Internacionalidade , Valores de Referência
19.
J Chem Phys ; 126(15): 154310, 2007 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-17461629

RESUMO

The partial photoionization cross sections and asymmetry parameters of S atoms have been measured using constant-ionic-state (CIS) spectroscopy in the photon energy range 10.0-30.0 eV. The ionizations investigated in these CIS experiments are the (3p)(-1) ionizations S(+)((4)S)<--S((3)P), S(+)((2)D)<--S((3)P), and S(+)((2)P)<--S((3)P). For the first time Rydberg series which converge to the fourth ionization limit have been observed and assignments of these series have been proposed. These correspond to excitations to Rydberg states that are parts of series which converge to the fourth ionization limit, S(+)((4)P)<--S((3)P) (3s)(-1), and autoionize to the lower S(+)((4)S), S(+)((2)D), or S(+)((2)P) states. For each series observed in the CIS spectra photoelectron angular distribution studies, combined with other evidence, has allowed the angular momentum character of the free electron on autoionization to be determined.

20.
J Chem Phys ; 126(4): 044304, 2007 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-17286467

RESUMO

The photolysis of allene and propyne, two isomers of C(3)H(4), has been investigated in the excitation energy range of 7-30 eV using vacuum ultraviolet synchrotron radiation. The visible fluorescence excitation spectra of the excited neutral photofragments of both isomers were recorded within the same experimental conditions. Below the first ionization potential (IP), this fluorescence was too weak to be dispersed and possibly originated from C(2)H or CH(2) radicals. Above IP, three excited photofragments have been characterized by their dispersed emission spectra: the CH radical (A (2)Delta-X (2)Pi), the C(2) radical (d (3)Pi(g)-a (3)Pi(u), "Swan's bands"), and the H atom (4-2 and 3-2 Balmer lines). A detailed analysis of the integrated emission intensities allowed us to determine several apparition thresholds for these fragments, all of them being interpreted as rapid and barrierless dissociation processes on the excited potential energy surfaces. In the low energy range explored in this work, both isomers exhibit different intensity distributions in their fragment emission as a function of the photolysis energy, indicating that mutual allene<-->propyne isomerization is not fully completed before dissociation occurs. The effect of isomerization on the dissociation into excited fragments is present in the whole excitation energy range albeit less important in the 7-16 eV region; it gradually increases with increasing excitation energy. Above 19 eV, the fragment distribution is very similar for the two isomers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...